
NOTATION 

Vo, V, V d ,  initial volume of sample, volume at moisture content u, and volume of abso- 
lutely dry material, respectively; AP, change in mass of the moist material; P w, density of 
water; N/N0, ratio of the current value of the radioactivity at the surface of the sample 
to the maximum value at the end of drying; i/J0, ratio of the moisture flux through the 
sample surface to its initial value; ~, relative moisture content of air. 
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TEMPERATURE DEPENDENCE OF THE TRANSPORT 

COEFFICIENTS OF MONATOMIC GASES 

O. A. Kolenchits UDC 536.23:533.16 

We study the range of applicability of the power-function approximation for the 
temperature dependence of viscosity and thermal conductivity of monatomic gases. 

The temperature dependence of the transport coefficients of gases and their mixtures 
is often described by the power function 

~ ( T )  = ~o , (1) 

where the exponent n is different for different gases, and ~0 is the value of the so-called 
reference point at temperature T 0. The quantity n, generally speaking, varies with tem- 
perature according to 

d l n ~  
n = ~  (2) 

d l n T  ' 

but in restricted temperature intervals one can, with some accuracy, use the value n = const. 
This dependence is used in theoretical modeling of a variant of the shock-tube method [1-4] 
in the measurement of the thermal conductivity of gases at temperatures 1000-6000~ (Table 
I). 

It was shown in [5-7] that the experimental results concerning the thermal conductivity 
of monatomic gases are described satisfactorily by the function (I) with n = const at high 
temperatures. As the temperature is lowered, however, the results deviate from this func- 
tion towards higher values of thermal conductivity. From the point where this deviation 
starts, the limit of applicability of the function (i) was determined in [5-7] for each 
gas. In [8], these results were generalized to the viscosity of monatomic gases in order 
to obtain data at high temperatures at which no experimental investigations have been 
carried out. Thetemperatures of the reference point T O and the exponents n which were 
found in [5-7] are shown in Table I. It should be noted that the experimental results con- 
cerning the high-temperature thermal conductivity are characterized by a large error. Con- 
sequently, the scatter of these data can affect the accuracy of determination of the para- 
meter TQ for the function (I). 
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TABLE i. Empirical Parameters of the Power Function (i) 
Which Approximates the Temperature Dependence of the Trans- 
port Coefficients at Temperatures T > T o 

Gas 

source 

He 

Ne 
Ar 

Determination of thermal 
Iconductivity by the shock- 

I 
tube method ~ 

[ To, K n 

I<r 
Xe 

320 
300 
300 
300 
300 
300 
303 
303,15 

0,69 [3] 
0,70 [41 
0,637 [2] 
0,703 [2] 

o,68_+O,Ol [11 
0,71 14] 
0,695 [21 

0,72~0,0! [11 

IAnalysis 
Analysis of the ex-lo f the data 
perimental data on I[gl on the 
thermal conductivit~ transport 
. . . . .  I I cO--eLfici-ents 

To, K n I source j To, K n 

300 

6OO 
500 

700 
8OO 

0,710 [51 

0,630 1 [61 
0,675 [6j 

0,690 [7] 
0,690 [7j 

.150 

350 
6O0 

,9OoOo 

O, 697 

O, 662 
0,680 

0,680 
O, 692 

Average 
values 
of the 
exponent 

O, 699 

O, 643 
O, 690 

0,688 
0,701 

* In the measurements of thermal conductivity by the shock- 
tube method, the exponent in the dependence (i) was deter- 
mined in [1-4] from the experimental material obtained at 
temperatures above 1000-1600~ The values of the reference 
point T O were chosen in [1-4] arbitrarily in the room-tem- 
perature range. 
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Fig. i. Dependence of the transport coefficients of mon- 
atomic gases [i) He; 2) Ne; 3) Ar; 4) Kr; 5) Xe] on the 
temperatures (T,~ from the standard handbook data [9]: 
a) viscosity (q, Pa'sec); b) thermal conductivity (X, W/ 
(m -I .K-I). 

The viscosity of gases is, at present, measured with higher accuracy than thermal conduc- 
tivity. Vagraftik and Vasilevskaya [9] used the experimental material on viscosity and ther- 
mal conductivity of monatomic gases to determine the temperature dependence of the so-called 
real collision integral. Hence, they obtained standard handbook data about the transport co- 
efficients in the temperature range from the normal boiling points to 2500~ Figure 1 shows 
the temperature dependences of viscosity and thermal conductivity of monatomic gases from 
the data of [9]. It is seen that the exponent n in the dependence (i) increases with decreas- 
ing temperature; only at very low temperatures one observes an anomaly for He. Analogously 
to the results of [5-8] on thermal conductivity, the data of [9] at high temperature can 
be described by the function (i) with n = const and, with increasing molecular mass of the 
gases, the deviations from this formula are observed at increasingly higher temperatures. 
Table 1 shows the values of the exponent in the dependence (i) which can be used to reproduce 
the data [9] with an error not exceeding 1% in a region bounded from below by the parameter 
T o . This is considerably less than the error given by Vagraftik and Vasilevskaya [9] for the 
handbook data. 

Using an analysis of the experimental data on thermal conductivity of monatomic gases, 
Vagraftik and Vasilevskaya [5-7] and Shashkov et al. [i0] showed that, in the temperature 
range 90-6000~ it is unsuitable to use the function (i) with a constant value of the expo- 
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TABLE 2. Parameters Which Characterize the Dependence (4a) 
for Different Potential Functions 

Potential T* b a 8.q( 2,2)* ' % ntheo r 
function 

(0--6) 
(Ii--6--8), 7=3 
(12--6--8), 7=0 

(12--7) 
(12--6) 
(28--7) 

10--100 
10--200 
11--200 

11,5--110 
18--400 
20--100 

. 

O, 184+0,007 
0,152_+0, 007 
0, I52+0,005 
o, 144_+.0,004 �9 
0,148+0,003 
0, 073~0, 002 

0,190 
0,169 
0,160 
0,138 
0,157 
0,076 

0,20 
0,20 
0,14 
0,12 
0,09 
0,06 

0,684+0,007 
0,652~0,007 
0,652+0,005 
0,644~0,004 
0,6487t:0,003 
0,573~0,002 

1n~(2,2) * 
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Fig. 2. Dependence of the collision integral Q(2.2), (a) 
and of the quantity E* = Q(2.a),/~(2.2), (b) on the reduced 
temperature for the potential functions: I) (9-6) [14]; 2) 
(11-6-8) [15]; 3) (12-6) [ii]; 4) (12-7) [16]; 5) (28-7) [14]; 
6) (exp-6) [17, 18] [a) a = 12.3 (Kr), a = 12.4 (He); b) a = 
13.0 (Xe); c) a = 14.0 (Ar); d) ~ = 14.5 (Ne)]. 

nent in [1-4] in a wide temperature range. For example, the approximation of the results 
of measurements using the shock-tube method [1-4] by the power function at temperatures 
from 300-320 to 5000-6000~ (Table i) gives thermal conductivity too low by 5-12%. They 
were corrected in [I0] by restricting the region of applicability of the power law by the 
temperature range of the measurements in shock tubes (T o = 1000-1600~ 

Thus, it is not completely clear in what temperature range it is correct to approximate 
the data on viscosity and thermal conductivity of monatomic gases by a power function with a 
constant exponent. The data concerning the parameter T o in Table i differ from each other 
and, as a result, must be tested and confirmed. This should not be done by a direct analysis 
of the experimental values of the transport coefficients, but by some other independent method. 

We consider the temperature dependences of thermal conductivity and viscosity of monato- 
mic gases within the framework of the Chapman-Enskog calculation. According to [ii, 12], in 
the first approximation for the two-parametric potentials of the intermolecular interaction 

[ ~ ( T ) h = f [ T ,  M,  e, ~, ~c2'~)*(T*)I, 

The effect of force parameters onthe magnitude of viscosity and thermal conductivity is 
indeterminate: They are more sensitive to the variation of ~ than to the variation of ~. 
Despite the imperfection of the available model potentials for which the values of the colli- 
sion integrals are tabulated, it is possible to use them to describe satisfactorily indivi- 
dual properties of gases in specific temperature intervals by choosing appropriate values of 

the force parameters. The ratio 

i t __ , / - - -T- -  ~(2,2)* (T~) ( 3 )  

~o V ~ ~(2,~)~ (T*) 
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Fig. 3. Coefficient of dynamic viscosity 
(a), the empirically determined exponent 
n (b), and the correction for the proper 
volume of molecules in the Van der Waals 
equation of state (c) as functions of 
the molecular mass. The quantity ~ is in 
Pa'sec, b in m3/kmol, and M in kg/kmol. 

does not contain the parameter o and depends only on the reduced temperature. 

If the dependence u(T) can be adequately described by a power function, it follows from 
(i) and (3) that 

Q(2'2)*(T*) = { T~ \I 0 (4)  
~(~'~)~ (T~) ~-T-) 

or 

where 

In O(2'2)e [.. (T*)] = a -- b In T*, (4a) 

1 
b = n - - - -  o=lni(T$)b~(2,2) ,  , (To)]. (4b) 

2 
F i g u r e  2a shows t h e  dependences  o f  in  ~ ( 2 . 2 ) ,  on in T* f o r  a number of  p o t e n t i a l  f u n c -  

t i o n s .  It is seen that, with increasing temperature, they all approach a straight line. 

The exponent in the dependence (4) 

b = - -  d ln~(2'~) (5)  
d in ~* 

can be determined from a recurrence formula for the collision integrals [Ii, 12] 

T d ~  + r +  ~U,r)=:~U,r+J), 

which, for the reduced integrals, gives the relation 

d lnf2 (~'r)~ r ~(l,r+l).~ 
- -  = (r + 2) .- 
d l n T *  L ~U,r), 

From (5)  and (6)  we o b t a i n ,  f o r  r = s = 2, 

- !  ] .  (6) 

9 
b = 4 ( l - - E * ) ,  sz= --4E*,  t (7)  

2 
where E* = ~(2'3)/~( 2'2)* (Fig. 2b). 

Table 2 shows, for a number of potential functions, the regions of reduced temperatures 
in which the dependences E*(T*) = const (collision integrals, respectively) are approxi- 
mated, with a certain accuracy, by a straight line of the form (4a). Also shown are the va- 
lues of the coefficients a, b, and ntheo r. From the lower bound of these regions To*, one 
can determine for each gas the temperature of the reference point T O = T0*E/k. However, 

t We note in passing that the exponent in the dependence I~ ! for the diffusion coefficient 
is determined from the formula n = 9/2 - C*, where C* = ~ 2)*/~(l,l)*. 
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Fig. 4. Dependence of the function z = in[(T*)n -I/2" 

~(2,2)*(T*)] on in T* and parameter nexp obtained us- 
ing the potential functions (12-7) (a) and (m-6-8) (b) 
for the following gases: i) Xe; 2) He; 3) Ar; 4) Kr; 
5) Ne. 

the values of T o for the most often used potentials (12-6), (12-7), and (m-6-8) are in the 
temperature intervals 100-180~ for He, 520-6300K for Ne, and exceed 1500~ for Ar, 2100~ 
for Kr, and 2900~ for Xe, which contradicts the data in Table 1 for heavy inert gases. We 
therefore turn to an analysis of the values of the exponent n. 

Since, at high temperatures, the transport coefficients are determined mainly by the 
repulsion forces, the exponent n in the dependence (I) clearly should also be associated 
with these forces. It follows from Fig. 2a and Table 2 that the quantity ntheo r is due to 
the slope of the repulsive branch of the potential function: the "softer" the potential, 
the higher the value of n. According to (4), n = 1/2 in the limiting case of hard-sphere 
model, and n = i for the model of point repulsion center for Maxwellian molecules. It was 
noted in [13] that the greatest possibilities occur for the potential functions (m-6-8) 
and (12-7) since, in contrast with the (n-6) and (exp-6) models, they make it possible to 
describe systematically (for identical values of the force parameters) the experimental va- 
lues of a number of properties of gases in a wide temperature range. It is seen from 
Table 2 that the values of the exponent determined using models (m-6-8) and (12-7) agree 
within 1.2%. 

The data in Table i show that the deviations of the empirically determined values of 
nex p (from the viscosity and thermal conductivity measured by stationary methods and by 
the nonstationary shock-tube method) are approximately 3% for He, 5% for N_e,t 5% for Ar, 
2% for Kr, and 4% for Xe. Below, we use the average empirical values of nex p which are 
given in Table i. It should be noted that the quantity nex p for Ne has a much lower value 
than for other gases. In accordance with the above discussion, the neon molecules are 
"harder" at high temperature than the molecules of other inert gases. Consequently, in 
the temperature range T > T o , neon is closer to the ideal-gas model than other inert gases. 
Figure 3a, b shows a clear relationship between the magnitude of viscosity of inert gases 
and the average empirical value of the exponent of the dependence (i). The correction for 
the proper volume of molecules in the Van der Waals equation of state, taken from [19] 
(Fig. 3c), shows a qualitatively analogous dependence on the molecular mass of the gas as 
the parameter nex p. 

A comparison of the experimental and theoretical values of the exponent n (Tables I 
and 2, respectively) obtained using the potential curves (m-6-8) and (12-7) shows a good 
agreement (within 1.4%) only for Ne; for other gases, ntheo r < nex p. It is therefore pos- 
sible to estimate for Ne the temperature of the reference point T o from the lower bound of 

�9 ~ 
the region of the reduced temperature in whlch the dependence In ~ (2,2)~ on In T can be ap- 
proximated in the form of a straight line (4a). This agreement is probably a reason for the 
good agreement of the theoretical and experimental values of thermal conductivity and vis- 
cosity which is, as a rule, observed for Ne. 

This deviation for Ne is due to a difference between the results of [6] and [2], which are 
in very good agreement, and the value obtained from the data of [9] on the viscosity and 
thermal conductivity. The relatively high value of n in the latter case is explained by the 
fact that, in the determination of the temperature dependence of the actual collision in- 
tegrals in [9], argon was used as the base substance. This leads to leveling of the values 
of the exponent for other gases. 
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TABLE 3. Value of the Temperature Parameter of the Reference 
Point in the Dependence (i) Determined for Monatomic Gases 
Using Different Models of Intermolecular Interaction 

Gas 

Potential 
function 

(12--6--8) 
(11--6--8) 

(12--7) 
(12--6) 

He 

T~ To, K 

4,7 48,0 

4,3 43,9 
4,7 48,0 

Ne K Ar 

T~ T0, TOY 

4,7 
12,0 540 4,6 

5,2 

To, If, 

719 
699 
645 

~r 

4,9 
,I, 7 
5,2 

To, K 

1058 
100~ 
988 

Xe 

T~ To, K 

4,2 1239 
4,2 1239 
~,6 lO53 

To take into account the disagreement between the empirical and theoretical values of n 
we introduce the function 

z(n, T*)---- ln[(T*) 2 .Qc2,2~*(T,)]" 

I t  f o l l o w s  f rom Eq. (4b)  t h a t  z ( n t h e o  r ,  To*) = a .  F i g u r e  4 shows t h e  d e p e n d e n c e s  o f  t h e  
f u n c t i o n  z on i n  T* and t h e  p a r a m e t e r  nex  p o b t a i n e d  f rom t h e  d a t a  on t h e  c o l l i s i o n  i n t e g r a l  
f o r  p o t e n t i a l s  ( 1 2 - 7 )  and ( m - 6 - 8 ) .  I t  i s  s een  t h a t  t h e y  have  a minimum which  i s  s h i f t e d  
towards higher temperatures with decreasing parameter n. Table 3 shows the values of To* 
determined from the condition of minimum of the dependence Z(nexp, T*): 

-4--1 / 9  ) E* (T~) = /--2- ~ next ' B 

Since the methods for the determination of the force parameters of the potential functions 
are based mainly on the experimental information concerning the thermophysical properties 
of gases,t the obtained values of T o are not exact. However, on average, they confirm 
the results of [6] for Ne and the results of analysis of the data [9] for Ar, Kr, and Xe. 
Only for He the interval of the application of the power function was extended towards low- 
er temperatures.$ The values of the reference point %0(T0) which were used in [i0] in the 
correction of the results of measurements of thermal conductivity by the shock-tube method 
are, for all gases, within the limits shown in Table 3. 

Thus, the results of the present work confirm that the power function with a constant 
exponent can be used for the description of transport coefficients of monatomic gases in 
a certain range of temperatures which is reduced on the high-temperature side with increas- 
ing molecular masses of the gas. Hence it follows that it is expedient to use a power 
function as a component of a polynomial which approximates the temperature dependence of vis- 
cosity and thermal conductivity of monatomic gases and their mixtures in the generalization 
of experimental data in a wide temperature range. The presence of this term makes it pos- 
sible to describe reliably the available experimental data and, possibly, by extrapolating 
the generalized dependence, obtain the values of viscosity of inert gases in the temper- 
ature range above 2000~ where there are no experimental data. 

The second aspect of the present work refers to the particular features in the temper- 
ature dependences of viscosity and thermal conductivity of He and Ne in comparison with 
other inert gases. The analysis of the temperature dependence of the transport coefficients 
using the experimental and generalized data [i-9], carried out with the power-function ap- 
proximation, shows that each of the gases underconsideration has an individual value of the 
exponent of the function in (i). For He, Ar, Kr, and Xe, the values of n in the region of 
high temperatures differ within 2%. For Ne, the difference is considerable (7.5%). When 
the temperature is decreased, the change of the quantity n is qualitatively identical for 
all gases with the exception of He for which n decreases in the temperature range below 150~ 

tFor the (12-7) potential, we used the improved values of the parameter g [13] determined 
from the multitude of experimental data on the properties of inert gases. 
An analysis of the dependence (4a) for the quantum collision integrals for the (12-6) 

potential leads to the value T o = 50~ 
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A study of the temperature dependence of viscosity and thermal conductivity using a 
number of potential functions (relation (7), Table 2) showed that the magnitude of expo- 
nent n is due to the character of intermolecular interaction. Within the framework of each 
two-parameter model of the interaction, the quantity n is identical for the entire group of 
inert gases. The derivation of the exponent n which is observed for Ne at temperatures 
T > T o indicates that the true interaction potential between the molecules of this gas in 
the repulsive region increases more steeply than for other inert gases. An anomalous beha- 
vior of the quantity n for He is caused by the quantum-mechanical nature of the inter- 
molecular interaction forces at low temperature. Consequently, viscosity and thermal con- 
ductivity of helium and neon in these temperature ranges obey the principle of correspond- 
ing states with much lower accuracy, and this should be taken into account in the analysis 
of the experimental results concerning the properties of inert gases and their mixtures. 

NOTATION 

T, temperature; ~, thermal conductivity (k) or viscosity (~); M, molecular masS; o, E, 
~, potential parameters of the intermolecular interaction function; k, Boltzmann constant; 
~(2,2)*(T*), reduced collision integral; T* = kT/~, reduced temperature; and b, correction 
for the proper volume of the molecules in the Van der Waals equation of state. 
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